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Impact of two bodies one of which is covered by a 
thin layer of liquid 

By ALEXANDER KOROBKIN 
Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090, Russia 

(Received 1 July 1994 and in revised form 28 March 1995) 

The paper deals with the plane unsteady problem of the collision of two rigid 
undeformable and shallow surfaces, one of which is covered by a thin layer of an ideal 
incompressible liquid. At the initial instant of time, a dry surface touches the liquid free 
boundary at a single point and then starts to penetrate the liquid layer. The flow region 
is divided into four parts : the region beneath the entering surface, the jet root, the spray 
jet and outer region. Inside each of those subdomains the flow patterns have their own 
peculiarities and are analysed separately. The matching conditions allow us to obtain 
the uniformly valid asymptotic solution of the original problem. The relative body 
motion and the characteristics of the spray jets generated under the impact are 
determined. The condition on the shapes of the bodies, under which the velocity of the 
impact of the rigid surfaces is non-zero, is derived. 

1. Introduction 
The plane unsteady problem of the collision of two rigid shallow surfaces one of 

which is covered by a liquid is considered. Examples of processes of this kind can be 
found in machinery engineering where impacted surfaces (for example, driving wheels) 
are usually covered by a thin layer of oil, and in the problem of crane operation in a 
dock. 

Another example is connected with the natural catastrophe of a huge solid mass 
falling into a lake from an adjacent mountain. Dr E. Baba (1994, personal 
communication) reported ‘About 200 years ago in Shimabara of Nagasaki (Japan) a 
hugh solid mass, which was a part of mountain (Mau-yama) fell into shallow bay 
(Ariake-bay) due to an earthquake. As a result, many people living at opposite coast 
of the bay were killed due to tsunami (soliton)’. The closely related problem of large 
water waves generated by landslides was analysed numerically by Harbitz, Pedersen & 
Gjevik (1993). A review of a large number of Norwegian events associated with rock 
slides into fjords and lakes is given by J ~ r s t a d  (1968). The wave generated by the fall 
can be very dangerous, especially for dams and power stations. The possibility of this 
catastrophe has to be taken into account by designers. 

A sketch of the flow is shown in figure 1. Initially the liquid is at rest and occupies 
a region -h-f,(x) < y <fl(x), wherefl(0) = O,f’,(O> = 0 andfl(x) > 0 where x += 0. A 
shallow rigid surface ( y  =fi(x)) touches the free liquid boundary ( y  = -f;(x)) at a 
single point taken as the origin of the Cartesian coordinate system xOy. At some 
instant of time, taken as the initial one ( t  = 0), the body begins to penetrate the liquid, 
the initial impact velocity being V,. The position of the entering body at an instant 
t is given by y =fi(x)-s(t), where s( t )  is the penetration depth. We shall determine the 
liquid flow, its boundary geometry and the body motion up to the moment T of the 
contact between the solid surfaces under the following assumptions : (i) the solid 
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FIGURE 1. Impact of a shallow body on a liquid layer. (a) Initially, the liquid is at rest and occupies 
the region - f , (x ) -h  < y < -,fl(x), and the body touches the free surface at a single point: DS, dry 
surface; WS, wetted surface; FS, free surface of the liquid layer. (b)  The flow pattern: Rx,(t) is the 
coordinate of the intersection point; s(t)  is the penetration depth. 

surfaces are undeformable, symmetrical with respect to the y-axis and shallow, 
f l ( x ) / f , ( x )  + 0 as x + 0;  (ii) the wetted surface is smooth, its radius of curvature at the 
top (x = 0) differing from zero; (iii) the liquid is ideal and incompressible; (iv) external 
mass forces are potential; (v) the liquid motion is plane, symmetrical with respect to the 
y-axis and irrotational; (vi) surface tension is absent; and (vii) the thickness h of the 
liquid layer is much smaller than the dimension of the solid surfaces R. 

Assumption (vii) implies thatfi(x) = Rf?,(x/R),j = 1,2, where the& are dimensionless 
functions and e = h /R  is much less than unity. The coordinates of the points where the 
entering contour intersects the undisturbed liquid level ( y  = - f l (x ) )  are k Rx,(t) (see 
figure 1 b) .  The function x,(t) satisfies the equationA [x,(t)]-s(t)/R = -A [x,(t)]. At the 
moment T when the surfaces contact each other, we obtain fz(x,)  +A(x,) = e, where 
x, = x,(T). It is clear that x* + 0 as e + 0. We say that the solid surfaces are shallow 
if x, + 6. This implies that the derivative of the function L(LJ +fl([) is small at small 
values of the argument 6. Moreover, assumption (i) predicts that f l ( x , )  = o[J?(x,)], 
where x, < 1. Therefore, at leading order as e+O, the equation for x,(e) can be 
approximated by a simpler one, f,(x,) = e, which on differentiating in e, yields 
&x,)dx,/de = 1. Here dx,/de is of the order x,/e; therefore x,(e)/e = O(l/L(x,)). 

For example, if fl(x) = 0, &(x) = ( l / n )  Rk((x(/R)",  s(t) = V, t ,  n > 0, k > 0, we 
obtain x, = ( n ~ / k ) l ' ~ .  The condition x, 9 e is satisfied when nl/ndl/n)-lk-l/n 9 1. This 
is possible in the following two cases. (a )  n > 1, 6 < 1, k = O(1); (b) n = 1, k < 1. In 
the latter case the introduction of R is formal. 

We take Rx,  as the lengthscale in the x-direction, and h as the lengthscale in the y-  
direction. It can be shown that the problem under consideration can be approximately 
transformed to the water-entry problem, which has a simpler geometry than the 
original one. The transformation y1 = y + f l ( x )  maps the original position of the free 
surface onto the horizontal line y1 = 0 and the position of the wetted surface onto the 
line y, = -h. The position of the entering surface is now described by the equation 
y ,  =.f,(x)+f,(x>-s(t). It can be verified that this mapping does not change the 
equations of motion, or boundary or initial conditions at leading order with respect 
to x,. The derivatives i3/i3j, a/at  are transformed by this mapping into a/i3yY, and i3/i3t, 
respectively. The derivative a/ax is transformed into 
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or, in the dimensionless variables, into 

The product (Rx,/h)f^;(x/R) is of the order e-'x*(e)~(x,) where x / R x ,  = O(1). We 
have obtained above that x,(e)/c = O( 1 /A(x,)), which predicts 

Assumption (i) implies that the wetted surface is shallower than the dry one, 
f;(x,)/t2(x,) + 0 as x* + 0. By L'Hospital's rule we get fi(x,>/&(x,) + 0 as x, + 0. 
Therefore, at leading order the mapping does not change the operators of 
differentiation in x, y ,  t. The water-impact problem (fi(x) = 0) is considered below; 
however, the results presented are valid not only for this problem but also for the more 
general one with both solid surfaces curved. 

It is important to note that the liquid flow depends not on the whole shape of the 
entering body but only on the shape of the wetted part, i.e. on the body geometry near 
its top (x = 0). In a small vicinity of the top, the shape of the body may be 
approximated by a simpler one. If the body is blunt and smooth, the Taylor expansion 
may be used that yieldsf^,([) = c1 6' + o( t2) ,  c1 3 0 as 1[1 < 1. The approximation of the 
body shape by a parabolic one is quite general (see Korobkin & Pukhnachov 1988) but 
it does not cover all possible cases. The analysis developed in the present paper is valid 
for an arbitrary blunt body. Numerical results are given for the case whenf2([) can be 
approximated near the point [ = 0 by a power function. 

The impact by a pointed body, the deadrise angle of which is not small, by a cusped 
body, and by a flat-bottomed body are not considered here, and the impact of a box- 
like structure onto shallow water will be analysed in a future paper by the author. The 
analysis will be based on both the present approach and the experimental results by 
V. I. Bukreev (1994, personal communication). 

The main focus of the present paper is the plane problem, but the approach 
suggested is valid in the three-dimensional case as well. There are three reasons for 
analysing the two-dimensional problem first: (i) the plane problem is much simpler 
than the three-dimensional one but yet contains the main peculiarities of the general 
impact problem; (ii) the plane problem is more suitable for experimental analysis and 
verification of the model; and (iii) the present approach may be combined with strip 
theory to obtain an approximation to the three-dimensional solution. The strip theory 
implies that the variation of the flow in the cross-sectional plane is much larger than 
the variation of the flow in the longitudinal direction. It is clear that this approximation 
will not be true at the ends of the body. 

The impact of a shape that is symmetric about the y-axis is considered for simplicity 
only. 

Two cases should be distinguished : 
(i) Initially the body is placed above the liquid and then starts to approach the liquid 

free surface. The air which is pushed ahead of the body cannot escape completely from 
the gap between the shallow bottom and the free surface and, as a result, a cavity filled 
by the entrapped air may be formed at the contact instant. The air flow between the 
bottom and the liquid surface before the contact occurs is of great importance 
(Iwanowski & Yao '1992, 1993). 

(ii) Initially the body touches the liquid and then starts to penetrate it. We may 
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expect that in this case the presence of air does not influence significantly the impact 
because the liquid density is much greater than the density of the air. This is the case 
which is considered in the present paper. 

The impact of a shallow-bottomed body onto a liquid layer may be divided into the 
following four stages : 

(i) At the first stage the speed of the contact region expansion is of the order of the 
sound velocity in the resting liquid c, (Korobkin 1992). The duration of this stage is 
small and can be estimated from the relation R(dx,/dt) ( t )  = O(c,). 

(ii) At the second stage the acoustic effects may be disregarded, and the dimension 
of the contact region is much smaller than the layer depth h. However, the depth of 
body penetration is much smaller than the contact region size. Thus the presence of the 
bottom may be neglected and the liquid layer may be changed for the lower half-plane. 
To estimate the duration of this stage, the following relations may be used: s(t)  4 
Rx,(t) < h. This case was analysed by Wagner (1932), who suggested approximating 
the wetted part of the entering body by a plate of width unknown in advance and so 
must be determined together with the liquid flow. The Wagner approach is now the 
main tool in ship hydrodynamics analyses. 

(iii) At the third stage the depth of body penetration is much smaller than the 
thickness of the liquid layer, s(t) < h, but the dimension of the contact region is of the 
same order, Rx,(t) = O(h). This case was analysed by Galanin & Saikin (1981) within 
the framework of the Wagner approach. 

(iv) At the fourth stage the depth of body penetration is comparable with the layer 
thickness, s(t) = O(h), but the dimension of the contact region is much larger than it, 
Rx,(t) % h. This is the stage which is under consideration in the present paper. 

Four important remarks should be made : 
(i) For a given shape of entering body some stages may be absent. For example, in 

the wedge-entry problem there is only the first stage when the deadrise angle is of 

(ii) In order to determine the characteristics of each stage, the dimension of the 
wetted part of the entering body was used above. This dimension is unknown in 
advance at each stage, and it has to be determined together with the liquid flow and 
the pressure distribution. But to estimate the duration of each stage, the function x,(t) 
which is found in advance from purely geometrical reasonings and which is of the same 
order as the dimension of the contact region may be used. That is why the relations 
given above can be used for preliminary estimations but not for calculations. 

(iii) The duration of each stage under consideration is much larger than the 
durations of the previous stages. This can be verified using the relations mentioned 
above. Therefore, at  leading order every stage may be considered separately without 
any reference to the previous stages. 

(iv) At each stage, except the fourth, the deformations of the liquid domain due to 
the impact are small compared with the domain size. Therefore, under assumptions 
(i)-(vii) the equations of motion and the boundary conditions may be linearized, and 
the boundary conditions may be taken at the undisturbed liquid level in the first 
approximation. This idea was used by Korobkin (1994) for the first stage, by Wagner 
(1932) for the second, and by Galanin & Saikin (1 98 1) for the third stage. At the fourth 
stage the deformation of the liquid domain must be taken into account in any case. 
That is why the present analysis may be used to test numerical schemes developed to 
describe flows with large deformations. 

O(V,/c,). 
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2. Formulation of the problem 
The entry of a blunt contour into a layer of ideal incompressible liquid is considered 

below (see figure 2). At the initial instant of time ( t  = 0), the body touches the liquid 
free surface at a single point taken as the origin of the Cartesian coordinate system 
xOy.  The liquid initially is at rest and occupies the strip - h < y < 0. The line y = 0 
corresponds to the undisturbed position of the free liquid surface, and the line y = - h 
to the rigid bottom. Then the body starts to penetrate the liquid layer at an initial 
impact velocity of V,. The position of the entering body is given by the equation y = 

f ( x ) - s ( t )  where s(t) is the depth of penetration. It is necessary to determine the liquid 
flow and the body motion under assumptions (i)-(vii) of the previous section. 

The liquid motion is governed by the Euler equations 

with respect to the velocity vector of liquid particles u(x, t )  = (u, u )  and the pressure 
p ( x ,  y ,  t ) ;  p is the liquid density, g is the acceleration due to gravity. The equation of 
continuity for an incompressible liquid is 

au  a v  
ax ay 
-+- = 0. 

The liquid flow is assumed irrotational ; therefore, the equation 

( 3 )  

is satisfied. Let F,(x,y, f) = 0 describe the position of the free surface. On the free 
surface, 

and the 

the position of which is unknown in advance, the kinematic condition 

a4 a4 aF 
at ax ay 

- + u - + v ~ = O  

dynamic condition 
p = o  

hold. On the wetted part of the entering contour, the size and position of which will 
be determined together with the problem solution, the normal component of the 
velocity of the body and that of the liquid particles are equal: 

v = f ( x ) u - s ’ ( t )  ( y  =Ax) - s ( t ) ,  1x1 < c(t)). (7) 

Here c(t) is one half the dimension of the wetted part of the entering body (see figure 
2b). On the bottom, y = - h, the vertical component of the liquid velocity u(x, - A ,  t )  
is zero: 

u = O  ( y = - h , - m < x <  +a). (8) 
The initial conditions are 

u = o ,  p = o ,  c = o ,  s=o ,  s ’ = & ,  <(x ,y ,O)=y  ( t = O ) .  (9) 
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V I  

FIGURE 2 .  Impact of a solid body on the free surface of a liquid layer. (a)  Initially, the liquid is a t  rest 
and occupies the strip - h < y < 0 and the body touches the free surface at  a single point. (b) The flow 
pattern: 2c(t) is the dimension of the contact region. 

--I IV I1 I1 IV 

FIGURE 3. Sketch of the liquid flow: I, the region beneath the body; 11, the jet roots; 111, the 
spray jets; IV, the outer region. 

We assume that near the top, x = 0, of the entering contour, the body shape may be 
approximated by a power function: 

1 
n 

f ( x )  = - Rk (:In. 
Assumption (vii) will be satisfied in the following two cases (see 0 1): (i) n > 1, h / R  < 
1 ; (ii) n = 1, k < 1. In the first case R may be defined in such a way that k = 1. In the 
second case R is a formal parameter, and it is convenient to take R = h / k .  A body with 
n = 1 is a wedge, and bodies with n > 1 have a flatter bottom than a wedge, i.e. are 
locally horizontal at their vertex. In both cases there is a small parameter 6 = h / R  in 
the problem (1)-(9). We shall determine an approximate solution of the problem 
(1)-( lo), which is uniformly valid as E -f 0 up to the moment of contact between the 
entering body and the bottom, 0 < t < T. 

In order to construct an approximate solution, the method of matched asymptotic 
expansions is used. In accordance with this method the flow is divided into the four 
regions shown in figure 3 : I, the region beneath the entering body; 11, the jet root; 111, 
the spray jet; IV, the outer region. 

In region I, the orders of the independent variables and the unknown functions 
are as follows: x = O(Rx,), y = O(h), t = O(h/V,), u = O(V,), (3) gives that u = 
O( V, RxJh) ,  (1) gives p = O(pG [Rx,/h]'), (4) gives au/dy = O( V , / R x , ) .  Here 
x* = x,(T) and x* = (ns/k)'/" when (10) is valid (see figure 2b). It was mentioned 
above that x*(E) i 0 and sx;'(e) -+ 0 as E +. 0. Therefore, the term u du/+ in (1) is much 
smaller than other terms in the equation, and it may be omitted at leading order as 6 --f 0. 
Accordingly, all terms in (2) are much smaller than the term (l/p) (C?p/@). This means 
that in this region, @/ay = 0 at leading order. Equation (4) gives at leading order 
&/2y = 0. These estimates make it possible to consider the pressure p and the 
horizontal component of the velocity u as approximately y-independent. Equations ( 3 ) ,  
(7)-(9) do not change their forms when e+O. 
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The characteristic of the problem considered is that one has to present the flow 
scheme in advance in a way which will allow us to construct the uniformly valid 
combined solution, which is possible if the flow in the region I1 is essentially two- 
dimensional. This region moves from the centreline at velocity c’(t). The internal 
variables A, ,u which have to be introduced in the region are x = c(t) + A ,  y = ,LL, where 
h = O(h), p = O(h). The horizontal velocities of the liquid particles in regions I and 11 
must be comparable, which gives u = O( V,Rx,/h). Then (3) yields 0 = O( V, Rx, /h ) ,  
and (7) shows that the velocity of the body s’(t) inside the jet root may be neglected 
compared with the flow velocity. The derivative in time ? / a t  is transformed in the 
internal variables into the operator a /a t  - c’(t) 2/ah which may be rewritten in 
dimensionless variables in the form 

- _ _ _ _ _ _ ~  “i h a(tV,/h) c? c’(r) V, a(h/h) a 1 ’ 
But c’( t ) /V,  = O((R/V,)x;(r)), where x,(t) satisfies the equation J[Rx,.(~)] = .Y(t). 
Differentiating this equation in time, one obtains Rx:(t) = s’(t)/f”Rx,(t)]. Therefore, 
c ’ ( f ) /V ,  = O(l / f (Rx , ) )  and is much greater than unity. Equation (10) predicts 
f’(Rs,) = nes;l(s), which is a small quantity. Moreover, it can be verified that 
c’(r) = O( V, Rx,/h), i.e. the speed of the contact region (region I) expansion is of the 
order of the liquid velocity in region 11. The analysis presented indicates that the 
derivatives in time, c?/at, in (1)-(9) can be substituted by -c’(t)a/ah with accuracy 
up to O(f’(Rx,)). This means that the flow in region I1 may be considered as 
approximately quasi-stationary at leading order as s + 0. 

In the jet region (region 111) the pressure is near the atmospheric value and, hence, 
the liquid particles in the jet move inertially and tangentially to the entering surface. 
The flow inside the jet region was analysed by Howison, Ockenden & Wilson (1991) 
within the framework of the classical Wagner theory. It was shown that the flow is 
approximately one-dimensional and depends on that in the jet root; the influence of the 
jet motion on the flow inside the jet root may be neglected. 

The critical velocity for the liquid layer is equal to (gh)l” where g is the acceleration 
due to gravity. When dc/dt > (gh)”’, the liquid outside the contact region, i.e. in region 
IV, remains at rest. In order to find the condition under which the liquid in region IV 
will be at rest for 0 < t < T,  we can put that c’(t) = O(Rxi(t)). But 

R (dx,/dt) ( t )  > R (dx,/dt) ( 7‘) = V, k-l’n(n~)(l’n)-l 

and the condition dc/dt > (gh)”* can be rewritten as V,/(gh)l” 3 nex;l(s). When the 
velocity of the contact region expansion approaches the critical value, a soliton may be 
formed. Further, the soliton escapes from the entering surface and propagates at a 
velocity which is about the critical value. 

The viscous effects may be neglected at leading order everywhere when V, B v / R  
where v is the kinematic viscosity coefficient (v = 0.01 cm2 s-’ for water). When R = 

50 m, we get the inequality L< $- 2 x lopx m s-l. 
We shall determine the flow characteristics in regions I and 11, and then match them 

with each other and with the rest state in region IV. It will be shown that this procedure 
makes it possible to find approximately all the characteristics of the liquid flow and the 
body motion up to the moment of the contact of the entering body with the bottom. 
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3. The liquid flow between the entering surface and the bottom 

equations of motion (1)-(4) can be simplified and taken in the forms 
The asymptotic analysis and physical reasoning indicate that in region I the 

ut + uu, = (1 lP)P,, (1 1) 

u , + u ~ = O  (1x1 < ~ ( t ) , - h  < y < f ( x > - s ( t ) ) ,  (12) 

U = f’(4 - s’(0 (Y  =Ax) - s(0,Ixl < c(t>>, (13) 

u = 0 (v = -h, (XI < ~ ( t ) ) .  (14) 

where u = u(x, t ) ,  p = p ( x ,  t ) ,  z, = v ( x , y ,  t). The boundary conditions (7), (8) give 

Integrating (12) with respect to y and taking (13) and (14) into account, we find 

in the symmetrical case. (The prime denotes a derivative.) The values of the functions 
at x = c(t) will be denoted by the subscript c. Then 

where H,(t) = f(c) + h -s( t )  is the layer thickness at the boundary of region I .  In (15) 
and (16) the functions c(t),  s(t) remain unknown. 

In order to find the pressure distribution over the contact spot, we have to integrate 
(1 1) using (15) and the boundary condition p(c(t) ,  t )  = p,(t), where p,( t )  is unknown in 
advance. We get, after integration, 

p(x, 4 = P,(O + ;p[u:(t> - u2(x, 01 +P (17) 

The hydrodynamic force F(t) on the entering body is 

p(x, 0 dx = (2p,(O + pu:(t>> 40 

The second Newton law yields m, s“ = m, g - F( t), where m, is the mass of the entering 
body per unit length. Substitution of (18) into this equation leads to the differential 
equation with respect to the function s = s(t): 

A(c, s) S” + B(c, s) (q = C(p,, c), (19) 

where 
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The initial conditions for (19) are 

s(0) = 0, s’(0) = v, ( t  = 0). (23) 
In problems of machinery engineering the gravity force must be omitted. 

Thus, the flow and the pressure distribution in region I are determined with the help 
of two arbitrary functions c(t), p,(t). To find them, we need to consider the flow in 
region 11. 

4. Liquid flow in region I1 and matching conditions 
In the moving coordinate system which translates to the right at the velocity d c l d t ,  

the flow in region I1 can be considered as approximately quasi-stationary, the entering 
body velocity can be neglected and the body surface can be taken as a horizontal plate 
(figure 4). Within the framework of this scheme the jet of the thickness h moves left 
with the velocity dcldt. A part of the jet mass continues to move left between the two 
rigid horizontal plates, the distance between which being H,(t). The pressure is p, ( t )  
and the horizontal velocity is u,,(t) at the left-hand-side infinity. Another part of the jet 
is turned and forms a spray jet with thickness h,(t). The dynamical condition on the free 
surface demands that in the quasi-stationary case the magnitude of the flow velocity on 
the free surface is constant. Therefore, the horizontal velocity of the spray jet at infinity 
is dc/dt (see Tuck & Dixon 1989). We have used here the conditions of matching 
the flow parameters in regions I and 11. Moreover, these conditions give u,,(t) = 

This problem was solved by Tuck & Dixon (1989). But if we are not interested in a 
detailed analysis of the fine flow structure, the integral conservation laws can be used 
to find the relations between the flow characteristics away from region 11. We obtain 
the following relations: 

dc/dt - uc(t). 

mass conservation law 
he’ = hj c’ + H,  u,,, (24) 

Bernoulli’s equation (which is equivalent to the energy conservation law) 

1 1 2  ; c‘2 = -p,  + 5 u,,, 
P 

momentum conservation law 

Here 
(pe + pu;) He = pc”(h + hi). 

u,,(t) = c’(t) - cs’/Hc. 

We have the four equations (9)-(12) for the unknown functions h,(t), c(t) ,  p,(t), un(t). 
By algebra we find 

cs’ 
2Hc [ I  - (h/H,.)1’2] ’ 

- dc 
dt 
- _  

hi = h[(Hc/h)1’2 - 112. (30) 
Equations (28)-(30) make it  possible to define the flow in region I and the entering 
body motion. 
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P = P&) 
~~ 

h,  c‘p = 0 

h r ’ p = O  

FIGURE 4. The flow pattern in the jet root region. 

5. Motion of the body 
The differential equation (28) can be rewritten as 

c (0 < s < h), - dc 
ds - 2HJ 1 - (h/Hc)1’7 

where the right-hand side is dependent on c and s only. This means that (31) with the 
initial condition 

c = o  (s=O)  (32) 
defines the size of the contact region 2 c as a function of the penetration depth s only. 
Inserting (29) in the equation of the body motion (19), we obtain 

A,(s)s”+A,(s)(s’)2 = m,g(O < t < T ) ,  

s(0) = 0, s’(0) = v,, 
(33) 
(34) 

where 

The value of T is unknown in advance and has to be found from the condition 
s(T) = h. Thus, the motion of the body will be found after solving the initial-value 
problems (31), (32) and (33)-(35). 

These problems can only be solved numerically, but the analysis of their solutions 
is necessary. It is convenient to introduce the non-dimensional depth of penetration 
n = s /h  and the new unknown function U(n)  = H J h  - 1. Then h Uis the elevation of the 
liquid at  the point x = c(t) ,  and the formula (30) for the jet thickness may be rewritten 
as 

(36) 

In the caseflx) = Rkn-l(lxl/R)” (see 92), one can verify that 
hi = h([ 1 + U(C)]”~ - 1)’. 

l in  
c(n)  = R ( Z )  (U(rr)+a)”n 

and (31) leads to a simple differential equation for U(u) :  

g = ;( 1 +$1+[1+ U]-1/2)- 1 (0 < a < l), 

(37) 

u=o (a= 0). (39) 
It is important that (38) and (39) depend on the only parameter n. We obtain 

n2(n + 1) 
4(2n + 1) 

n3(n + 1) ( 7 2  + 8n + 2) g3 + O(a41 
8(2n + 1)2 (3n + 1) 

CT2 - U(n) M nu- 
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FIGURE 5 .  Graph of the function U ( s / h )  for different values of the parameter n. 

as r + 0. The asymptotic equation (40) is necessary to start the numerical solution of 
(38) and (39). The problem (38)-(40) was solved numerically by the Runge-Kutta 
method with step size 0.01. At the first and second steps the values of U(a)  were 
calculated using the asymptotic equation (40). Halving the step size changes the 
result by less than 2 x lo-'. The function U(n) monotonically increases with cr and M 
(figure 5). All other unknown quantities can be expressed in quadratures with the help 
of this function. 

Let us find the function t(r) and its first derivative t'(r). Then the characteristics of 
both the liquid flow and the body motion will be defined in parametrical form with the 
dimensionless depth of penetration r as the parameter. In order to find the derivative 
t'(r), let us consider the initial problem (33)-(39, the solution of which will be sought 
in the form s' = [L(S)]' '~.  The new function L(s) satisfies the equation 

A,(s) L' + 2A2(s) L = 2m,g 
and the initial condition 

L(0) = E. 
The solution of the initial-value problem (41) and (42) provides the dependence of the 
body velocity s' on the penetration depth s. Let us introduce the non-dimensional time 
T = t VJh, then 
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FIGURE 6. The depth of the wedge penetration as function of time. 

Equations (43)-(46) give the solution in quadratures and allow its analysis in detail. 
Note that two impact processes will be mechanically similar only when the geometrical 
parameter n, the statical parameter p and the Froude number Fr have the same value. 

In the case of a wedge impact (n = l), we get 

ph2 
b’=m,k” ’  (47) 

where k is small owing to assumption (vii). If the wedge is heavy (p < l), equations 
(43)-(47) indicate that ~ ( c T )  z 1 and the wedge hits the bottom at the velocity 
V,(1 +2IV2)ll2. The corresponding velocity for a light wedge (p % 1) is of O(Vp-1’2), 
but its dependence on time is non-trivial. 

The numerical calculations were done for a wedge y = 0.1 1x1 of mass m, = 
7000 kg rn-l entering a water layer of depth 0.5 m at initial velocity V, = 6 m s-’ (p = 
35.7, Fr = 2.7, n = 1). The integrals in (43)-(45) were evaluated by Simpson’s rule with 
the fixed step size 0.01. All integrands are bounded and smooth functions of their 
arguments. This case was used not for simplicity of calculation but to demonstrate the 
typical evolution of the process. Figure 6 shows that the duration of the wedge 
penetration is relatively large, approximately 1.2 s. Initially the entry velocity grows a 
little owing to the gravity force, and then quickly vanishes (figure 7). At the final stage 
the variations of the body velocity are quite small up to the moment of the collision 
with the bottom. It is seen that the velocity of the contact region expansion dc/dt 
remains much greater than the body velocity and greater than the critical velocity 
(gh)”’ which is equal to 2.215 m s-l in this example. The jet thickness hj as function of 
the penetration depth s is shown in figure 8. 

The body motion near the bottom is of particular interest. We shall find the 
asymptotic behaviour of the body velocity s‘( t )  and time of penetration t(v) as CT+ 1-0. 
We assume that ,u = 0(1) and will denote U(l)+ 1 by a. It is seen that for n < 3 all 
functions in (43 j (45 )  are bounded. Hence, in this case the time of penetration T = t( 1) 
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FIGURE 7 .  Velocity of the wedge (-) and velocity of the contact region expansion (-----) as 
functions of the penetration depth s. Initial velocity of the wedge is 6 m ss', the liquid depth is 0.5 m. 
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FIGURE 8. Thickness of the jet h, as function of the penetration depth s. 
Maximum thickness is 7 cm. 

and the velocity of the collision between the moving body and the bottom s'(T) are 
finite. When n = 3, we obtain as u+ 1-0 

where the constant C, depends on the motion history. Equality (49) means that the 
body approaches the bottom at zero velocity; (48) gives that the value of T is finite and 
can be calculated. We n > 3 ,  we find 
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where C, is a constant. Therefore, in this case also the collision velocity s'(T) is zero 
and T is finite. 

6. Validity of the scheme 
The result that s'(T) = 0 for n b 3 is not correct, because just before the moment T 

the present scheme for the flow fails. In order to demonstrate this point, let us find the 
asymptotic behaviour of the speed of the contact region expansion dc/dt as g+ 1 .  
Taking (37), (43)-(45) into account, we obtain 

where n > 3 and g+ 1 .  It is seen from (52) that the velocity dc/dt is less than the critical 
value (gh)'I2 just before the contact of the body with the bottom occurs. This means 
that a soliton may be formed at the end of the body motion. 

Another limit on the scheme validity is connected with the flow velocities and the 
pressure distribution beneath the body, which can be very high. The flow velocity 
between the body and the bottom is defined by (15). The velocity ~ ( x , t )  increases 
monotonically from zero at x = 0 to u,(t) at x = c(t)  up to the moment when 
(n- 1) U(v)  = 1 -ng. For a parabolic shape (n  = 2) at this moment the penetration 
depth is approximately a quarter of the layer depth (see figure 5). After this moment 
the function u(x, t )  reaches its maximum 

at the point (54) 

which is inside the contact region, 0 < x,,,(t) < ~ ( t ) ,  and tends to the centre point 
x,,, + 0, as t + T. We will have umac = co, where co is the sound velocity in the liquid at 
rest, when 

where M = &/co is the Mach number. This condition is not necessarily satisfied for 
arbitrary values of the parameters and must be verified in the numerical calculations. 
The present scheme is valid only when u,,,/c0 < 1 .  

The pressure distribution over the wetted part of the entering contour is given by 
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where 0 < z < 1, 0 < r < 1. For a parabolic shape entering with a constant velocity, 
n = 2,  s(t) = V, t ,  we obtain 

p(x,f) = p E - G  -,r , c = (2hR)1’2(U+r)1’2, ; (: 1 
1 Z2 G(z,(T)  = ( U + a )  1 +(U+ 1)-1’2 - ( U(U+ 1) z2(U+r)+ 1 - / ( 2 2 ( U + r ) +  1 

It is interesting to note that 
c( t )  z (6RK t)’’‘, 

p(x,  t )  z 3 p P  R/h  

as r + O .  It can be shown that p(x,  r )  reaches its maximum value at the centre of the 
contact region and p = 0[( 1 - n)pl] as (T + 1. This means that at the final stage of the 
impact the liquid compressibility is of importance and the flow pattern will be more 
complicated than that presented here. 

7. Conclusions 
At the initial stage of the shallow-water impact the Wagner theory can be used. Then 

the presence of the bottom becomes important and at this stage the depth of the body 
penetration can be approximately disregarded in comparison with both the contact 
region dimension and the liquid layer depth. At the next stage, which is the subject of 
the present paper, the variation of the liquid domain with time cannot be neglected 
and, moreover, it is the main factor of the process. At the final stage, when the entering 
body is close to the bottom, the liquid compressibility and the possibility of soliton 
formation must be taken into account. But the duration of this stage is small and can 
be neglected to a first approximation. 

The problem considered is quite suitable for experimental analysis, because the 
duration of the process is relatively large and one does not need modern equipment to 
follow the liquid flow. Preliminary experimental results by V. I. Bukreev (1994, 
personal communication) on a blunt-wedge impact on shallow water show that the 
main effect is the spray jet formation. The spray jet is strong: its thickness is 
comparable with the depth of the liquid layer. A soliton is not formed: most of the 
liquid displaced by the entering body leaves the liquid layer as spray jets. 

The present analysis can be extended to the axisymmetrical problem. In the three- 
dimensional case as well as for the oblique-entry problem, some difficulties may be 
present in obtaining the solution in region I only. 

Preliminary results of this work were presented at the Ninth International Workshop 
on Water Waves and Floating Bodies, Kuju, Oita, Japan, 17-20 April, 1994. 
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